Advanced Transmitter Architectures Based on Switch Mode Power Amplifiers
نویسنده
چکیده
Nowadays the main driving parameters for the research in radio transmitters in wireless infrastructure are energy efficiency, frequency agility, and integration. This thesis presents new solutions at the device waveform-, circuit-, and transmitter level which exploit the inherent high efficiency potential of switchmode power amplifiers (SMPAs) for realization of energy efficient, wide-band, highly integrated transmitters for wireless communication applications. In the first part of the thesis, a continuum of novel high efficiency class-E power amplifier modes are derived, significantly extending the known SMPA design space. In contrast to conventional SMPA modes, the new continuum allows some variation for the switch impedances, providing important possibilities on wide-band SMPA designs. This is experimentally verified in a 1 W SiGe BiCMOS SMPA design having a drain efficiency of above 70% over a 1.3-2.2 GHz bandwidth. In the second part a novel combiner synthesis technique is developed that enables realization of wide-band highly efficient outphasing transmitters. The technique is based on the calculation of the combiner network parameters from the boundary conditions required for highly efficient switch-mode operation of the transistors in each branch. The approach is validated in a CMOS-GaN outphasing transmitter design providing a peak output power of 44±0.2 dBm and a 7.5 dB output power back-off efficiency exceeding 52% over a 750-1050 MHz bandwidth. It is further shown that the same theoretical approach can also be used for design of Doherty PA combiner networks. A 28 W 3.5 GHz Doherty PA is designed and manufactured for experimental verification providing a record-high power added efficiency of 51% at an adjacent channel leakage ratio (ACLR) of -50 dBc with carrier-aggregated 100 MHz LTE test signals. In the third part a new SMPA topology particularly suitable for amplification of RF pulse-width modulation (RF-PWM) signals is presented. In classical pulse width modulated SMPAs the varying pulse width leads to switching losses and hence efficiency degradation. We present an electronically tunable load output network that alleviates this problem. A 10 W 2 GHz CMOSGaN RF-PWM transmitter demonstrator is constructed and characterized to demonstrate the feasibility of the proposed technique. ACLR after digital predistortion linearization is -45 dBc at a drain efficiency of 67% with W-CDMA communication signals. The solutions presented in this thesis will facilitate realizations of frequency agile, energy efficient and highly integrated/digitalized radio transmitters for future wireless communication systems.
منابع مشابه
Class-E Power Amplifiers for Pulsed Transmitters
Nowadays the main driving parameters for the radio transmitter research are: energy efficiency, frequency re-configurability and integration. Pulsed transmitter architectures have attracted large interest in the recent years due to their potential to meet these demands. In pulsed transmitters, a highly efficient switch mode power amplifier (SMPA) is used in conjunction with a pulse modulator to...
متن کاملA High-Efficiency Transmission-Line GaN HEMT Class E Power Amplifier
In modern wireless communication systems it is required that the power amplifier could operate with high efficiency, high linearity, and low harmonic output level simultaneously. To increase efficiency of the power amplifier, a switching-mode Class E mode technique can be applied. This kind of a power amplifier requires an operation in saturation mode resulting in a poor linearity, and therefor...
متن کاملPerformance Analysis of Multiradio Transmitter with Polar or Cartesian Architectures Associated with High Efficiency Switched-Mode Power Amplifiers
This paper deals with wireless multi-radio transmitter architectures operating in the frequency band of 800 MHz – 6 GHz. As a consequence of the constant evolution in the communication systems, mobile transmitters must be able to operate at different frequency bands and modes according to existing standards specifications. The concept of a unique multiradio architecture is an evolution of the m...
متن کاملHigh Frequency Current Mode Class-D Amplifiers With High Power and Efficiency
High Frequency Current Mode Class-D Amplifiers With High Output Power and Efficiency By Anthony Lawrence Long A 13 watt Current Mode Class-D (CMCD) with 60% efficiency is presented. This amplifier is the highest power switch mode microwave power amplifier reported to date. The CMCD architecture is an improvement over the Voltage Mode Class-D in that the parasitic reactance in the active device ...
متن کاملThree-Level De-Multiplexed Dual-Branch Complex Delta-Sigma Transmitter
In this paper, a dual-branch topology driven by a Delta-Sigma Modulator (DSM) with a complex quantizer, also known as the Complex Delta Sigma Modulator (CxDSM), with a 3-level quantized output signal is proposed. By de-multiplexing the 3-level Delta-Sigma-quantized signal into two bi-level streams, an efficiency enhancement over the operational frequency range is achieved. The de-multiplexed si...
متن کامل